DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting

نویسندگان

چکیده

Traffic speed forecasting is one of the core problems in transportation systems. For a more accurate prediction, recent studies started using not only temporal patterns but also spatial information on road network through graph convolutional networks. Even though highly complex due to its non-Euclidean and directional characteristics, previous approaches mainly focused modeling dependencies distance only. In this paper, we identify two essential traffic addition distance, direction positional relationship, for designing basic elements as fundamental building blocks. Using blocks, suggest DDP-GCN (Distance, Direction, Positional relationship Graph Convolutional Network) incorporate three relationships into deep neural We evaluate proposed model with large-scale real-world datasets, find positive improvements long-term urban The improvement can be larger commute hours, it limited short-term forecasting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting

The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...

متن کامل

High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic net...

متن کامل

Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting

Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges,...

متن کامل

Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic s...

متن کامل

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transportation Research Part C-emerging Technologies

سال: 2022

ISSN: ['1879-2359', '0968-090X']

DOI: https://doi.org/10.1016/j.trc.2021.103466